Impact of atmospheric coastal jet off central Chile on sea surface temperature from satellite observations (2000-2007)

نویسندگان

  • Lionel Renault
  • Boris Dewitte
  • Mark Falvey
  • René Garreaud
  • Vincent Echevin
  • Fabrice Bonjean
چکیده

[1] The coast of central Chile is characterized by intermittent low-level along-shore southerly wind periods, called coastal jets (CJs). In this study, we take advantage of long-term satellite data to document the CJs characteristics over 2000–2007 and investigate its impact on upwelling. The CJ structure has a core some 100 km from the shore and a cross-shore scale of 160 km, and it usually lasts for several days (3–10). Its period of occurrence ranges from weekly to a few months. On the basis of covariance analyses between wind stress and sea surface temperature (SST) anomalies, it is found that CJ activity is seasonally phase locked with SST, with a peak season in August–October. The statistically dominant forcing mechanisms of the SST cooling during CJ event is a combination of seaward advection of temperature resulting from Ekman transport, air-sea heat exchange, and Ekman-driven coastal divergence. However, case studies of two events suggest a significant sensitivity of the dominant upwelling forcing mechanisms to the background conditions. For instance, the upward Ekman pumping associated with cyclonic wind stress curl is enhanced for the event with the CJ located more to the south. Although there are limitations associated with both the formulation of the heat budget and the data sets, the results illustrate the complexity of the upwelling forcing mechanisms in this region and the need for realistic high-resolution forcing fluxes. A CJ activity index is also proposed that takes into account the coastal upwelling variability, which can be used for teleconnection studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Summer precipitation determinant factors of Iran's South-East

Indian Ocean is known as a source of moisture for southeast of Iran due to summer precipitation. In this study, in order to investigate the role of SST of Indian Ocean, and the convergence and divergence fields in the precipitation of southeast of Iran, precipitation data of five synoptic stations were used during 2000-2010, including Iranshahr, Khash, ChahBahar, Zabul, and Saravan. To investig...

متن کامل

Trend of the Caspian Sea surface temperature changes

The interaction between sea and atmosphere has profound effects on the regions climate. Meanwhile, the sea surface temperature is considered as one of the most effective components of water bodies, and the controller of many atmospheric behaviors. Because of the importance of sea surface temperatures effects on atmospheric elements and also given the role of global warming on land and sea surfa...

متن کامل

VOCALS-CUpEx: the Chilean Upwelling Experiment

The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was a major field experiment conducted in spring of 2008 off southern Peru and northern Chile, aimed at better understanding the coupled climate systems of the southeast Pacific. Because of logistical constrains, the coastal area around 30 S was not sampled during VOCALS-REx. This area not only marks the poleward edge ...

متن کامل

Assessing Chlorophyll-a in the Southwestern Coastal Waters of the Caspian Sea

Caspian Sea with an average depth of 27m is the largest enclosed water body in the world. Despite its enormity and valuable biotic and economic resources, investigations on the biota and seawater properties are mosaic at best. In previous studies, the monitoring of the chlorophyll-a concentrations in the Southern Caspian Sea was organized based on satellite data sets however, vertical dis...

متن کامل

Evolution of 1996–1999 La Niña and El Niño conditions off the western coast of South America: A remote sensing perspective

[1] We present the evolution of oceanographic conditions off the western coast of South America between 1996 and 1999, including the cold periods of 1996 and 1998–1999 and the 1997–1998 El Niño, using satellite observations of sea level, winds, sea surface temperature (SST), and chlorophyll concentration. Following a period of cold SST and low sea levels in 1996, both were anomalously high betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009